N91-10613

>
",\;',/\'ft
Ada Software Productivity in Prototypes: o0
A Case Study _
Jairus M. Hihn LY D

Hamid Habib-agahi : /7) ,
Shan Malhotra jj
Jet Propulsion Laboratory
California Institute of Technology

ABSTRACT

This paper is a case study of the impact of Ada on a Command and Control project completed at the Jet
Propulsion Laboratory (JPL). The data for this study was collected as part of a general survey of software
costs and productivity at JPL and other NASA sites.

The task analyzed is a successful example of the use of rapid prototyping as applied to command and
control for the US Air Force and provides the US Air Force Military Airlift Command with the ability to
track aircraft, air crews and payloads worldwide. The task consists of a replicated database at several
globally distributed sites. The local databases at each site can be updated within seconds after changes
are entered at any one site. The system must be able to handle up to 400,000 activities per day. There
are currently seven sites, each with a local area network of computers and a variety of user displays; the
local area networks are tied together into a single wide area network.

Using data obtained for eight modules, totaling approximately 500,000 source lines of code, we analyze
the differences in productivities between subtasks. Factors considered are percentage of Ada used in
coding, years of programmer experience, and the use of Ada tools and modern programming practices.

The principle findings are the following. Productivity is very sensitive to programmer experience. The use
of Ada software tools and the use of modern programming practices are important; without such use Ada
is just a large complex language which can cause productivity to decrease. The impact of Ada on devel-
opment effort phases is consistent with earlier reports at the project level but not at the module level.

Introduction

The Economics Group at JPL has been involved in the collection and analysis of soft-
ware cost and productivity data for the past three years. The NASA Historical Database
contains data for over 100 subsystems including 10 different projects.
[Economics Group 1989] The JPL Software Database currently contains data for 4 projects
with 39 subsystems.[SORCE/Economics Group 1988] During the coming year data on seven
more projects will be collected. A relatively unique feature of these databases is that
they contain data on all the subsystems of each project for which information could be
obtained. Most software databases used for research contain only one or two observa-
tions from any one project. The advantage is that we are able to control for differences
between projects which are not directly measured by the specific database fields and
also can also analyze within project variations in effort and productivity. The disadvan-

J. Hihn

JPL
1 of 32

A
v
,

tage is that a larger number of observations must be collected to get a sufficient number
of independent data points for statistical analysis.

The data collected is primarily based on the COCOMO definition of a software environ-
ment. [Boehm, B. 1981] Table 1 lists the cost driver contained in the database which de-
scribe the environment. The database also includes size, measured by executable
source lines of code adjusted for inherited and modified code, and effort, measured by
work months. The portion of the life cycle for which effort figures have been collected in-
cludes from the requirements analysis phase through test and integration. Sustaining
engineering and the systems engineering effort to develop the requirements are nor in-
cluded. However systems engineering effort spent on requirements design updates and
formal design reviews is included. Two estimates of effort were collected. Technical ef-
fort figures gathered from interviews with the technical leads, estimates direct effort by
programmers and the technical managers. Implementation effort figures derived from
the task management office, include all labor charges to the project from the task man-
ager down. The non-direct labor charges are distributed across the subsystems on a
proportional basis. These charges include integration and validation testing, documen-
tation and management labor time. Implementation effort also includes secretarial time
which could not be separated out. Effort figures do not include upper level project man-
agement or system engineering previous to the SRR.

Table 1
Database Description

Product Attributes Computer Attributes
Required reliability Time constraints
Software complexity Storage constraints
Database size Host volatility

Turnaround time

Personnel Attributes Project Attributes

Analyst ability Software tools

Analyst experience Modern programming practices
Programmer ability Schedule

Language Experience
Virtual Experience

The average productivities in the NASA Historical Database are 1.5 to 3.5 SLOC per
day for flight software and 7 to 10 SLOC per day for ground based software. There were
a few subsystems which reached approximately 14 SLOC. In the JPL Software
Database, the average productivity ranged from 6 to 18 for 3 DOD projects and one
ground data capture project. There are two command and control projects which had
the highest productivities of the projects we have studied. Project 1 used Ada and rapid
prototyping to reach a implementation productivity of 17.9 SLOC/ work day. Project 2

J. Hihn

JPL
2 of 32

which was very similar to Project 1 did not use Ada and had an implementation produc-
tivity of 13.5 SLOC/ work day. The purpose of this study is to attempt to isolate the im-
pact of Ada versus the impact of software tools, modern programming practices and
other environmental factors on productivity.

Project Description

The US Air Force Military Airlift Command (MAC) runs one of the largest airlines in the
world. Scheduling problems are accentuated because flights, crews, and payloads can
be changed at any time in order to meet political and military objectives. MAC is in the
process of automating its command and control system by replacing its current
scheduling system, based on grease boards and the telephone, with a network of
workstations supporting a replicated database with real-time displays. Two major
components of MAC's Command and Control Automation Project are being completed
by JPL. Project 1 supports the vertical command and control operations, and Project 2
supports the actual execution of tasks. Project 1, a successful example of the use of
rapid prototyping, consists of a globally distributed replicated database with sites from
Germany to Hawaii.

Developed as a prototype which became an operational system, Project 1 had an
unusual software life cycle for a delivered system. JPL was required to develop Project
1 within two years at minimal cost. The functional requirements were vague becausc
the sponsor was not very computer literate. The project manager compensated for
these factors by waiving many of the standard formal design, documentation, and
testing requirements and by developing a very close working relationship with the
sponsor. The final requirements evolved as part of a joint effort between the project
team and the sponsor. Detailed documentation, except for the user's guides, could be
written after the project team and the sponsor had agreed that the system was working.

Project 1 consists of five application subsystems and three support system subsystems.
The applications support the following five MAC functional groups: Current Operations
(DOO), Transportation (TR), Command and Control (DOC), Logistics (LRC), and the
Crisis Action Team (CAT). The software work breakdown structure is similar to the
functional breakdown; therefore, the descriptions which follow of functional groups also
serve as descriptions of corresponding software tasks. DOO performs flight scheduling
and resource planning. TR is responsible for personnel ticketing and cargo loading and
unloading. DOC monitors the progress of each flight. When en route mechanical
failures occur, LRC provides information.which assists in the prompt servicing of debili-
tated aircraft. CAT controls system responses in the event of a threat or emergency.

System support for Project 1 resides in three subsystems: Graphics, Operating System
Shell, and Database. Graphics produces a graphical display of database information
while allowing the user to manipulate screens via a user interface. Operating System
Shell provides an interface to VMS OS, network commands, and low level VMS
functions. Database supports database design and control.

J. Hihn
JPL
3 of 32

Table 2

Development Data
Technical Implementation Technical Implementation
Size Effort Effort Productivity Productivity
Subtask (KSLOG) (Work Months) (Work Months) (SLOC/day) (SLOC/day)
Application Software
DOC 72 118 207 32 18
DOO 115 140 245 43 25
LRC 45 28 49 84 48
CAT 23 36 63 34 20
TR 70 60 105 61 35
System Software
Graphics 20 72 145 15 8.3
Common 110 258 453 22 13
Database 37 110 193 17.7 11
Total 492 822 1,460 31.5 17.9

The development data collected was based upon the status of the project in January
1988 which was before the software system was actually converted into a formal prod-
uct. The total size was approximately 500,000 source lines of code.! The sizes of the
modules range from 20,000 to 115,000 source lines of code. The code count is based
on executable source lines of code; the size figures do not include comments or blank
lines.

The productivity figures for the Project 1 subsystems are presented in Table 2. The
average technical productivity of Project 1 as a whole was 31.5 source lines of code per
day; the average total productivity was 17.9 source lines of code per day. At the time of
final delivery of the system implementation productivity had increased to an average of
20 SLOC/ work day. This occurred even though documentation and testing effort in-
creased significantly during the last release. This is most likely a result of the staff being
further up on the learning curve with respect to Ada and the application domain. Among

1. Atfinal delivery Project 1 will have reached approximately 750,000 source lines of code.

1. Hihn
JPL
4 of 32

the systems tasks, total productivities averaged 11 and ranged from 8 to 13 source lines
of code per day. The application tasks had total productivities averaging 25 and ranging
from 18 to 48 source lines of code per day. In general, application software is
associated with higher productivities than system software because application software
is less embedded and usually does not have to incorporate low level implementation
details.

Table 3 summarizes the values of the environmental factors included in the database
for Project 1. However, the table shows that experience and capability were rated high;
requirements volatility was rated low; and the use of modern programming practices
and software tools was extensive throughout the project.

Table 3
Project 1
Development Environment

Product Attributes Low to Nominal
Computer Attributes Low to Nominal
Personnel Attributes High
Project Attributes High

ANALYSIS

Project 1 developers achieved higher total productivity than the average NASA project
teams developing ground software. Several factors combined to permit this
achievement: the ability to match highly qualified personnel to the task needs, the use
of a prototyping methodology, the organizational structure of the development team, an
abundance of development tools, excellent communications with the sponsor, develop-
ment team cohesiveness, and the use of Ada.

The development environment contributed to the high productivity of the project staff.
The implementation managers were able to match skills and project needs with pro-
grammers whose capability and experience were well above average. Project 1 was
developed as an incremental prototype; the development strategy cut the standard de-
velopment life cycle. User's guides were written in parallel with the software. A single
design document was written at the end of the project which was the equivalent of an
FRD, FDD, SRD, and SDD combination to assist during the sustaining engineering
phase. In the testing phase a formal independent validation and verification was omit-
ted; and there were no formal preliminary and critical design reviews by an external or-
ganization. However, there was a formal internal review prior to each major software re-

J. Hihn

JPL
5 of 32

lease. The small overall staff size facilitated open communication within groups,
between groups, and with the sponsor. The sponsor provided ample hardware which
was appropriate to each task. Finally, the majority of the tasks were of moderate diffi-
culty or complexity.

One other factor that potentially contributed to the high productivity of Project 1 was the
use of Ada. At the time of the initial survey fifty percent of the total code was Ada and
varied from 0 to 90% across the subsystems. When the project started about half of the
programmers had an average of 1 year experience with Ada and the rest had no experi-
ence. A few had the maximum possible experience of about 2 to 2.5 years. There was
no formal requirement that Ada had to be used. In the early 1990’s Ada will be a more
mature language, but this level of staff quality was the best that could be hoped for
when software development began two years ago.

Ada advocates claim that the proper use of Ada, with its software tools, strong type
checking, and support of modern programming practices, increases programmer
productivity by over 100% and decreases program maintenance costs{Royce, W. 1987].

It is difficult to test these claims, however, because one must be very careful when
comparing the productivities of programmers coding in different languages. In
particular, Ada has several characteristics which can cause an Ada program to have
more or fewer lines of code than other third-generation language programs with the
same functionality. Ada's syntax for using objects can inflate an Ada program's code
count. On the other hand, Ada's ability to use generic procedures can deflate Ada's
code count, since a generic procedure would have to be written a number of times in a
third generation language. A recent survey found that the effect of Ada on code count
depends upon the application: business and scientific applications tend to result in larg-
er Ada code counts whereas avionics and automation projects tend to have smaller Ada
code counts.[Reifer, D. 1988)

Accurate measurement of the impact of Ada on productivity requires that major differ-
ences between organizational structures also be isolated. When subsystems of very
different projects are compared environmental differences not captured in the data can
arise. These differences especially relate to environmental factors such as communica-
tion between sponsor and contractor and cohesiveness of the programming teams. The
result is very large variances in the data; conceptually the problem is that of comparing
‘apples and oranges'.

The results of productivity comparisons between different projects and especially be-
tween languages is very sensitive to both the type of application and unexplained envi-
ronmental factors. To reduce the impact of these problems we will emphasize compari-
sons between modules with similar amounts of Ada and comparisons between projects
that are very similar in nature. The other project, Project 2, that will be referenced in the
analysis is also a command and control task performed under the same project office at
JPL and also for MAC. Both tasks were eventually housed in the same building and
both were prototypes at the time of this survey.

J. Hihn
JPL
6 of 32

Figure 1
Implementation Productivity Unadjusted

>
>
o 50
> A LRC
T T 45
» T
a 40
c © 35 A TR
o =
= 5 30
4]
«— O 25 A
c
GE-) w 20 A A
Q2 15 A Database
Q 10 A
= A
- 5
O T T T T T T T T T T T L]
0 10 20 30 40 50 60 70 80 90 100

% ADA

Figure 1 plots productivity, (SLOC/implementation effort)/19, against %Ada, the percent
of code in Ada for a module.? The graph is suggestive of a positive correlation between
the percent of a subsystem's code written in Ada and the productivity of that subsystem
which would represent the combination of the impact of Ada and the cost of mixing lan-
guages. Comparing the average productivity of those modules with less than 50% Ada
to those with greater than 50% Ada one may be tempted to draw the conclusion that
use of Ada increases productivity by about 15 SLOC/day which would be close to a
100% increase. However there are many other differences between these subsystems
which also impact productivity and these must be identified in order to isolate the actual
impact of Ada on productivity.

For example, compare the productivities of subtasks with similar percents of code
written in Ada. LRC, TR and Database are three such modules. Programmer
experience and the use of modern programming practices and tools are significant dif-
ferences between these subsystems. At the time of the survey the LRC technical lead,
which achieved the highest productivity, had 2.5 years of experience coding in Ada and
six years of experience object-oriented design. The nature of the LRC task allowed
the team to use objects extensively. The LRC staff also consistently employed
modern programming practices and software tools. The productivity of the TR team

2. 19 represents the actual number of work days in a month when discounting for holidays,
sick days and general meetings. [Boehm, B. 1981]
J. Hihn

JPL
7 of 32

was lower than that achieved by the LRC staff; the TR staff did use modern
programming practices and tools, but the TR programmers, with one to two years of
experience coding in Ada, were less experienced than the LRC team members. The
Database team were less productive than either the LRC or TR teams. Database had
zero years Ada experience because the only Database Ada programmer left the project
on very short notice. The remaining team members were left to tackle a complex task
with high required reliabilty while learning to use a complex language. The
inexperienced Ada team did not use software tools and did not follow modern
programming practices. However, the following question remains: just how much of the
productivity differences do experience, tools and modern programming practices when
combined with Ada explain?

Before we can answer that question we need to control for other known environmental
influences. Some projects are more complex; others have a greater required reliability.
If the database were large enough, we could estimate the influence of the environmen-
tal factors including the presence of Ada. Since there is not sufficient data, a second
best solution is to use known estimates of the effort impact of the environmental factors.
COCOMO provides estimates based on non-Ada projects. Therefore we can normalize
for these factors using the COCOMO weights, and the remaining productivity variations
between modules are likely to be related to the presence of Ada.

Assuming that

Effort = A -LB -EAF

where L is executable source lines of code and EAF is the product of the cost drivers or
environmental factors then adjusted effort is just Effort/EAF. Adjusted productivity then
becomes

ATOP = [L/Effort]*EAF.

J. Hihn
JPL
8 of 32

Figure 2 displays the plot of adjusted productivity against % Ada . After adjusting for all
the software development environmental factors except language experience the ad-
justed productivity values vary from 6.1 to 11.7 SLOC/work day. All but two subsystem
adjusted productivities fall between 6.1 and 8.6 SLOC/work day.

Figure 2
Productivity Adjusted
Except for Language Experience

+ LRC

O
o N B~ O

. + 1R

3 Database

Implementation Productivity
SLOC/work day
(00
+
+

o NN A~ O

% ADA

The average productivity for those module with less then 25% Ada is 6.9 SLOC/work
day and for those modules with greater then 60% Ada it is 9.1 SLOC/work day. Based
on a two-tailed t-test there is only a 10% probability that these represent the same distri-
bution. Hence we can tentatively conclude that those projects with a high Ada content
had a productivity 2.2 SLOC/work day higher then those with little or no Ada.
Compared to the average productivity for the whole project this represents a 12% in-
crease.

Within the group of modules with greater then 60% Ada the LRC module attained the
highest productivity of 11.7 SLOC/work day which represents a 4.8 SLOC/work day in-
crease or 25% improvement. The high productivity of Logistics is probably reflective of
their being further up on the learning curve. Logistics did have one member who had
the maximum possible Ada experience and substantial experience with object oriented
programming. This suggests that three years of experience with Ada and an Ada pro-
gramming environment might represent an important turning point. This point is further
reinforced given that during the final release productivity increased to 27 SLOC/work

J. Hihn
JPL
9 of 32

day which is when those who started with about 1 year of Ada experience would have
reached over three years of experience.

One other comparison that can be made is to compare the adjusted productivities be-
tween two similar projects one which uses Ada and one that does not use Ada. The
comparison project used Pascal. These results are reported in Table 3. The compari-
son project is also a command and control task for the Air Force and even for the same
contractor. The one major difference that cannot be controlled for is that Project 1 start-
ed out as a prototype but became an incrementally developed delivered system and
project 2 was a prototype from beginning to end. After adjusting for differences in com-
plexity and the lack of software tools the non-Ada project has a higher average adjusted
productivity. Based on a two-tailed t-test there is only a 5% probability that these repre-
sent the same distribution.

The implication is that if you take away the tools and rules and adjust for differences in
complexity and other environmental factors then the main impact of Ada as a language,
without its tools lowers productivity when the programming staff has an average of one
year experience. From the previous discussion we also suspect that once the experi-
ence level gets above three years then this difference will no longer be statistically sig-
nificant.

Table 3

Average Productivity
(SLOC/work day)

Total Adjusted
Project 1
(Ada & C) 17.9 7.7
Project 21 136 13.6
(Pascal)

For this small sample the inference that can be drawn is that for experience of one year
or less we can explain the majority of the observed variation in productivities by what
we know about the impact of software tools, experience, etc on other languages.
Software tools are important and a sophisticated programming environment will in-
Crease the productivity of any language. This interpretation must be discounted by the
fact that Project 1 is a prototype and therefore the testing and integration phase plays a
less significant role in determining development costs and it is here that one would ex-
pect Ada to have its most significant impact on development effort and productivity.

Ada and the Development Life Cycle
Previous studies have reported that Ada increases the effort in design, and decreases

J. Hihn
JPL
10 of 32

effort in the integration and test phase. One phase breakdown that has been reported
is 50:33:17 for Ada and 40:38:22 for FORTRAN.[Royce, W. 1987] Comparing to Projects 1
and 2 again we can see to what extent this pattern holds up for prototypes. Figure 3
shows a phase breakdown for the whole project of 36:37:27 for Pascal and 43:39:18 for
an Ada and C project. As expected, prototypes spend less time in design and more in
coding. Furthermore the Ada prototype spends more time in design and less in testing
then the non-Ada prototype.

While the effort by phase breakdown for the projects as a whole yields a consistent
story the view from the module level does not. There does not appear to be any consis-
tent pattern whatsoever.

Phase Distribution for

Command and Control Prototypes

100

90

80 1

70 —+

60 T

50

30

20

\\\\\\\\

AT W T T T TR T N T 9
L 4
LA T A WA Y UL UL L N SN
LIS
S Y N, . O WL L . WL N

xxxxxxxxx

10

NN

Integration and
Test

Coding

Detailed Design

Preliminary
Design

Requirements

AR SLYAY
AR N N N S Y

w \I\,\l\’\,\,#\‘

X

N

Project 2
Pascal

Project 1
Ada and C

J. Hihn
JPL
11 of 32

BpY % 06 8 08 G9 Gl 17! 0

N
N\

- a—

7

N 77,

8%8858&2
b
ubisaq \“m 7”7 . 0G
[
N, N NN men—
ubisaqg palie1sq K/
L L J LCUCNENEN
PPN
SRR
ey E AN,
@C_.O NESESESE IRERENENN
y 2 7 7 7 LT
k NoaTaTA NORTATN Y L
RN NS P -
N NN Y AN
NN IR
MW@ AYRNRNE N LA YA NAN
RN N EN AN
NS LRI NN Ao CUENENE NN
2 7 TN NN NS
CNCOP mt_mc NN NN LAY AN ALY
L P AN AR NN v s s s Iow
NN NN NN NN Y A A TATATAY o
r ST PN AN NN PN
EYEYENEN CYCYLYRY AN NN
NN NN NN NN NS TS
ANENENEN LYYENN N o NN
NN AN NN AN N2
SANNENEN LYY —_—— LNANENENS LN NEN
NN PN NN NN N NN PN A
SAYENENEN NOoATNN NN NENE ANANENENE N .
NN PPN NN NN RN N
SRR NATATN LYRNNENE ATATATAY LYCYRNENE NIRRT
I AN 2 2 7 s A N NA NARNN NN N PPN
SN CNENENEN INENENENE NoATA N NN AT
NN ¢t 47 NN NN NNNNG PN O T
ENENENEN LN ANENE N NN LAENENENE ST LU NENEN
IR NN NN NN NN st s AN
o LS L . N N8N N Y A . NN N WY ’I’f./ AR TR Oo—
—r—

Sa|Npoly | 120a8lodd Jo)
oseyd AQ UolInglJl1stig 140443

abejusdlad
1404414

J. Hihn
JPL
12 of 32

Conclusion

The data reflects the state of Project 1 before it actually became productized and there-
fore contains reduced effort figures for testing and documentation, which greatly in-
creased during the final release. There is also not any data on maintenance Costs.
Therefore the two areas where Ada’s strong type checking and compiler have an effect
are not reflected. In addition there was no effort to make the code portable or reusable.

Any conclusions are tentative and should be treated as hypothesis for future research.
As part of our continuing software costing analysis at JPL, two Ada projects and one
Lisp project will be surveyed during 1989 which should make it possible to better isolate
the impact of software tools and modern programming practices from other features of a
language.

Given these caveats then our tentative conclusions are the following for Ada in a proto-
typing environment.

(1) Analyst and programmer experience in Ada of three years or more could in-
crease Total Technical Productivity by 3-4 SLOC/day or a maximum of 25%.

(2) Technical experience and ability, modern programming practices and the
use of software tools are very important in achieving high programmer produc-
tivity.

(3) For any language the combination of highly capable and experienced per-
sonnel, with the discipline of modern programming practices and a sophisticated
programming environment should produce comparable levels of productivity to
that observed for Ada in this study.

(4) Effort in the three major phases of the software lifecycle appears to shift
such that time spent in design is increased and time spent in verification and
test is decreased.

J. Hihn
JPL
13 of 32

Bibliography

Boehm, B. 1981 Sofiware Engineering Economics, Prentice Hall.
Economics Group 1989 NASA Historical Database, JPL/Caltech, January
1989.

Reifer, D. 1988 Softcost-Ada: An Update, Fourth Annual COCOMO Users’
Group Meeting Workshop, Pittsburgh, Pa., Nov. 2-3, 1988

Royce, W. 1987 Estimating Ada Software Development Costs for C3
Systems, TRW Defense Systems Group, Preprint.

SORCE/Economics Group 1988 Software Productivity Analysis Database,
JPL/Caltech, 1988.

J. Hihn
JPL
14 of 32

THE VIEWGRAPH MATERIALS
FOR THE

J. HIHN PRESENTATION FOLLOW

8861 ‘€l 1equads(
ABojouyoa | }Jo ainjisu| eluioye)
Aiojeloge] uois|ndold 1ar

allr

elloyle\ ueys
Iyebe-qiqeH piweH
uyiy "IN snirep

Apnig aseQ v
:sisAjeuy AlAljonpold epy

J. Hihn
JPL
17 of 32

PAGE_ . INTENTIONALLY BLANK

SUOISN|OUO0)

sisAjeuy

Suwe|p epy

S108[0.1d [0J1UOD) PUB PUBWIWOY

MBIAIBAQ 108l01d

auInO

J. Hihn
JPL

18 of 32

Alnejon siuswalinbay
«9INP3YIS

saonor.ld buluwelbold Ulspon
$/00 8JeM]JOS

salnquly 109loid

8wy punoJeuinj
AUNEIOA BUIYOBY [ENLIA
LSiuensuon abeiojs
LSiuensuo) awij
saInquly Jaindwo)

aouauadx3 auIyoBpy [BNUIA
8oualiadx3 abenbue]
Alqede) iswweiboid
a8oualIadxg 1sAieuy
Aljiqede? isAieuy
salNquUIY [duuosiad

abenbue Juswdofarag
8zI1S aseqeled
Alxajdwon Sm\swom.
Aliqeijay paiinbay
salNqlNY 10Npoud

apow Juawdoerag

aseyd Aq umopyeaiq Lojj3

Juowabeuew %Se] Wolj Uoyo uoneluswsjdwi pue SMaIAISIUI WO LOYS [EOIUYID)
yuow Jad sAep Buiiom g1 Buiunsse syjuow YIom - 1so)

98P0 PaIJIpoW pue pajuayul 10} paisnipe
SJUBLLIWOD JNOYIM (DOTS) BPOD JO SaUI| 82IN0S 8|geINdaXa - 8ZIS

uonduosa(] aseqele(] a/emyos

J. Hihn
JPL

19 of 32

G'9
&
9¢cl
6L1 !

Kep siom/Q01S 10901

sa|npow g¢ ‘syosloid ¢ ‘eseqeieq aiemyos dr

N M <

Aep yiom/D0T1S 01-2 Ajerewixoidde pabelane p\/S punoln)
Aep YomM/D01S §'e-S' | Alerewixoldde pabesane pAn/S b1

sa|npow 00} ‘sjoaloud g ‘eseqele([edlIOISIH VSYN

SaIlIAIONPOId 8belany

J. Hihn
JPL
20 of 32

61 G 1€ 09l ¢é8 co6¥ [ejo]
bt LLL €61 oLl Le aseqejeq
£l 22 ey 8562 0Ll uowIwo)
€8 Gl Gl 2L 0¢ soiydess

alemyos WoalsAs

G¢ L9 SOl 09 0L Hl
02 ve €9 9¢ €e 1vo
8y v8 6V 82 sv o4
S¢ 34)44 ovi Gt 00a
sl 2¢ L02 a1l 2L 50a

atemyos uojiedddy

eleq wawdojanaQg

(Kep 10m/007S) (AEP 1OMD0TS) (SUIUOW HOM) (syuop siop) 201 9INPON
Auanonpolrd Auaionpoid yoy3 Hoy3 °z1S
uoleawajduwy [eoyday uoijeiuawa|duwy |eouyod |

|0J1U0D) puB pUBWILWOY
| J08loid

J. Hihn
JPL
21 of 32

SYSE} 0} PaydJeLW ||am dlom [ouUUOSIa
SiadojaAsp pue S18SN UsaMIaQ PalSIXe UOIEDIUNWILIOD JUS|[8oXT
sanbluyoa} pue sa1bojouyos) umouy pauiquiod j19alolg

Bunsa |
uoneuswno0(

adAjo0j0.4

epy

JuswiuoJiaug Juswdojens(
| 108l0.d

J. Hihn
JPL
22 of 32

ybiH sainquIy 199loid

ybiH saInquIy jsuuosiad
[BUILLON O} MO sanquy J19ndwon
|[BUILLON O} MO sSaINqLIY 1oNnpoid

lJuswiuoJIAug Juswdojanaq
| Yo8loid

J. Hihn
JPL
23 of 32

Buipo)
1SS} pue uoneibaiy

$1S00 Juswdo|anap Jamo| Aew/||Im epy

S1SOO adueuaiulie|y

s1oefo.d wus) Buoj Ul s1S00 8|0AD 81| JOMO] ||IM BPY

Swre|) epy

J. Hihn
JPL
24 of 32

J. Hihn
JPL

swa)sAs uoionposd 1oy}
paubisap si epy pue adAjojoid e sjuesaidal erep 8yl

Aujigenod Jo asnas poddns o) papuadxs jou sem LoYs

sabenbue| juaiayip wo.lj
8p0o9 JOo saul|, Buedwos usym usye} aq Isnw ased

|rews si azis s|dwes ay}

9oUIS YoJeasal aininy 1o} sasayjodAy se pamaiA 8q pinoys sinsal syl

sjeane)

25 of 32

"9|Npow B ul
S8Sealoul BpY JO % 8y} sk Alanonpoud ul esealou [eiausb e aq o} sieadde alsy |

vav %
oo.v o.m o.m 0L 09 0§ (037 0¢ o.N o.r oo
g
- To:
v
st
v Y 02 o
v sz 2 2
068 T
gv sea a
D~
o= o
Sy <
VY =
05 <

J. Hihn
JPL

¢, AAonpold uo epy jo 1oedw

26 of 32

J. Hihn
JPL
27 of 32

<

W O© < N O

%%
Aep/D01S
Allannonpoud |eiog

(a0}

L
© T N O
- - - ¥

8ousuadxg ebenbue pue
sadljoeid buiweiboid ulepoypy ‘s|00| 81emyos 104 1deox]
paisnipy Ajjeiued Anaionpold

goualiadxg ebenbue 10} 1deox]
paisnipy AlAilonpo.d

0 © T N O

Aep/D01S
A1ianonpoud |elo]

© T AN O
- - -

J. Hihn
JPL
28 of 32

Aep 31o0m/Q0T1S GEL Auanonpoud paisnipy
Kep yIom/Q0OTS 9°€l = Auanonpoud [ejoL

(jeased) g 109foid 1o} Auanonpouid abelsne ay L

Kep YIoM/Q01S V'L = Auanonpoud paisnipy
Aep YIoM/QO1S 6Lt = Aunanonpoud [el0]
(0 pue epy) | 108foid 1o} Ananonpoid abelene ay|

|0JjU0) puEe puBWIWO)
2 108f01d 01 pasedwod | 108/0id

J. Hihn
JPL
29 of 32

| 108foug
O pue epy

¢ 1o8loud
|[eosed

SISATeuy
Sluswalinbay
ubisa

Areuiwilsid

ubisaq pajiela(

Buipo)

\/\/\I\I\I\I\N\/\ A H.m m I_l
(o] pue uopelbagu

NNNNNNNYN
/rr/z//\.P
NN y
AT AT T TN

|aA8 108loud

$8d41010.d [041UOQ pUE PUBLIWIOY O} UOINGLSI(] aseyd

Ol

r 2. 72 2 7 7/ 7 2 7z A
AT T W N S S LY
. 7 7. 7 2 7 7 7 7 A
AR A AT YA YRR N
Y 2. 7 7 7 7 7 £ 7/
NN NN NN N N
[.72 7. ¢ 72 7 7 7 A
LR TR T UL N N N N
r .7 2. 7. 72 7 7 7 7 A
_.I. AR T UL N L SN

0¢

0€

oY

0§

09

0L

08

06

001

J. Hihn
JPL

30 of 32

EpyY %

SIUAWRIINDIY KN

ublsaq
Adeulwdl]odd

ubisaq palie1eq KA
BuULPOD ﬁmmu

1S9l
pue uolieJdbaiui

A A YA
s

NN
LU AN
s s
LY NN
7 AR
RYERENEN LYY NAY
PN AR PP
SAYLUA AN LYRYA RN
AP N A
hoN N N N AL A
PP 20 s s
SR S AT T]
PR PR
AR AT IR
PN s A 27 A
YA NN LY NN
PPN NN
(AN NN LYLYA VAN
A4 P A
LN . .

— Ol

sa|Npol | 109(0dd J0J
aseyd Ag uotingldistia 140444

08

— 06

1001

J. Hihn
JPL

aberusddad

31 of 32

140413

}s8] pue uoneibalul pasesos(
Sjuswaiinbal pue ubisap pasea.iouy;

seseyd juswdojanap o 1oeduwy
sednoeld Buiwwelboid ulepopy
sjuswuolirus Buiwwelboid
sabenbue| Jeyjo yum sjqissod aq pinoys sureb Anaonpoud Jsejiwig

sieah ¢ < sousliedxa sbenbue yum sjqissod aseaIoul °%Gz-01

"BPY Ul 8ousuiadxs Jeak | ebeiane uo inq aousuiadxs |BIouUBb 8AISUBIXS yjim
o|doad s|qedes Aian pauy sey yoiym 108loid mau e Jo aA0a)j81 8. S}nsal 9say |

J. Hihn
JPL
32 of 32

SuoISNjoU0)

